Search K
Appearance
Appearance
Other ways to support HackTricks:
At the heart of an integer overflow is the limitation imposed by the size of data types in computer programming and the interpretation of the data.
For example, an 8-bit unsigned integer can represent values from 0 to 255. If you attempt to store the value 256 in an 8-bit unsigned integer, it wraps around to 0 due to the limitation of its storage capacity. Similarly, for a 16-bit unsigned integer, which can hold values from 0 to 65,535, adding 1 to 65,535 will wrap the value back to 0.
Moreover, an 8-bit signed integer can represent values from -128 to 127. This is because one bit is used to represent the sign (positive or negative), leaving 7 bits to represent the magnitude. The most negative number is represented as -128 (binary 10000000
), and the most positive number is 127 (binary 01111111
).
For potential web vulnerabilities it's very interesting to know the maximum supported values:
fn main() {
let mut quantity = 2147483647;
let (mul_result, _) = i32::overflowing_mul(32767, quantity);
let (add_result, _) = i32::overflowing_add(1, quantity);
println!("{}", mul_result);
println!("{}", add_result);
}
#include <stdio.h>
#include <limits.h>
int main() {
int a = INT_MAX;
int b = 0;
int c = 0;
b = a * 100;
c = a + 1;
printf("%d\n", INT_MAX);
printf("%d\n", b);
printf("%d\n", c);
return 0;
}
The printed result will be 0 as we overflowed the char:
#include <stdio.h>
int main() {
unsigned char max = 255; // 8-bit unsigned integer
unsigned char result = max + 1;
printf("Result: %d\n", result); // Expected to overflow
return 0;
}
Consider a situation where a signed integer is read from user input and then used in a context that treats it as an unsigned integer, without proper validation:
#include <stdio.h>
int main() {
int userInput; // Signed integer
printf("Enter a number: ");
scanf("%d", &userInput);
// Treating the signed input as unsigned without validation
unsigned int processedInput = (unsigned int)userInput;
// A condition that might not work as intended if userInput is negative
if (processedInput > 1000) {
printf("Processed Input is large: %u\n", processedInput);
} else {
printf("Processed Input is within range: %u\n", processedInput);
}
return 0;
}
In this example, if a user inputs a negative number, it will be interpreted as a large unsigned integer due to the way binary values are interpreted, potentially leading to unexpected behavior.
Given a couple of numbers find out using z3 a new number that multiplied by the first one will give the second one:
(((argv[1] * 0x1064deadbeef4601) & 0xffffffffffffffff) == 0xD1038D2E07B42569)
This doesn't change in ARM64 as you can see in this blog post.
Other ways to support HackTricks: